Ground states are generically a periodic orbit

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flows on Solenoids Are Generically Not Almost Periodic

The space of non–singular flows on the solenoid ΣN is shown to contain a dense Gδ consisting of flows which are not almost periodic. Whether this result carries over to Hamiltonian flows remains an open question. Introduction For any compact symplectic manifold M of dimension at least 4, L. Markus and K. R. Meyer demonstrate in [MM] that the space H (M) of all C (k ≥ 4) Hamiltonians on M contai...

متن کامل

Prey-Predator System; Having Stable Periodic Orbit

The study of differential equations is useful in to analyze the possible past or future with help of present information. In this paper, the behavior of solutions has been analyzed around the equilibrium points for Gause model. Finally, some results are worked out to exist the stable periodic orbit for mentioned predator-prey system.

متن کامل

How many sorting equilibria are there ( generically ) ? ∗

It is shown that in a generic two-jurisdiction model of the type introduced by Caplin and Nalebuff (1997), the number of sorting equilibria (with jurisdictions providing distinct policies) is finite and even.

متن کامل

Periodic Orbit Quantization beyond Semiclassics

A quantum generalization of the semiclassical theory of Gutzwiller is given. The new formulation leads to systematic orbit-by-orbit inclusion of higher h̄ contributions to the spectral determinant. We apply the theory to billiard systems, and compare the periodic orbit quantization including the first h̄ contribution to the exact quantum mechanical results. Typeset using REVTEX

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inventiones mathematicae

سال: 2015

ISSN: 0020-9910,1432-1297

DOI: 10.1007/s00222-015-0638-0